跳转至

版权声明:来源于23ACEE班友-xhc 当时为了复习载体方便放在了网站上(手机打不开markdown)

Chapter 8 多元函数微分学

1. 多元函数的极限与连续性

1.3 二元函数的极限与连续

极限

\(n\)元函数\(f(P)\)\(U^0(P_0,\delta_0)\)内有定义,若存在一常数\(A,\forall \varepsilon>0,\exists\delta>0(\delta\le\delta_0)\),当\(0<\rho(P,P_0)<\delta\),都有\(|f(P)-A|<\varepsilon\)成立,则称\(A\)\(n\)元函数\(f(P)\)\(P\to P_0\)​时的极限,记作 $$ \lim_{P\to P_0} f(x)=A 或 f(P)\to A(P\to P_0) $$ 注意:这个极限与点\(P(x,y)\)趋于点\(P_0(x_0,y_0)\)的方式无关,只要\(P\)距离\(P_0\)充分接近,点\(P\)趋于\(P_0\)​点的方式可有无数种.

多元函数极限的归结原则

\(f(P)\)\(U^0(P_0,\delta_0)\)内有定义,则 $$ \lim_{P\to P_0}f(P)=A\iff 对于U^0(P_0,\delta_0)的任何子集E,\lim_{\stackrel{P\to P_0}{(P\in E)}}f(P)=A $$ 同样可用归结原则,若发现点\(P\)两个特殊的路径趋于点\(P_0\)时,\(f(P)\)极限存在但不相等,则\(f(P)\)在该点\(P_0\)极限不存在. 这是判断多元函数极限不存在的重要方法之一.

题型证明极限:用定义;极限:夹逼定理

累次极限与二重极限

累次极限\(\lim_{x\to x_0}\lim_{y\to y_0}f(x,y),\lim_{y\to y_0}\lim_{x\to x_0}f(x,y)\)​​本质上是二次求一元函数的极限累次极限存在性二重极限存在性没有一定联系.

定理:若累次极限\(\lim_{x\to x_0}\lim_{y\to y_0}f(x,y),\lim_{y\to y_0}\lim_{x\to x_0}f(x,y)\)​与二重极限存在,则三者相等.

推论:若\(\lim_{x\to x_0}\lim_{y\to y_0}f(x,y),\lim_{y\to y_0}\lim_{x\to x_0}f(x,y)\)​存在但不相等,则二重极限不存在.

连续

定义:设\(f(P)=f(x,y)\)在点\(P_0(x_0,y_0)\)某邻域\(U(P_0)\)有定义,且\(\pmb{\lim_{(x,y)\to(x_0,y_0)}f(x,y)=f(x_0,y_0)}\),则称函数\(f(P)=f(x,y)\)在点\(P_0(x_0,y_0)\)连续,记 $$ \Delta z=f(x,y)-f(x_0,y_0)=f(x_0+\Delta x_,y_0+\Delta y)-f(x_0.y_0) $$ 称为函数(值)的全增量,则连读定义可写为\(\lim_{\Delta x\to0,\Delta y\to0}\Delta z=0\).

\(\Delta_xz=f(x,y_0)-f(x_0,y_0)=f(x_0+\Delta x,y_0)-f(x_0,y_0)\)称为函数(值)\(x\)​的偏增量.

\(\Delta_yz=f(x_0,y)-f(x_0,y_0)=f(x_0,y_0+\Delta y)-f(x_0,y_0)\)称为函数(值)\(y\)​的偏增量.

\(f(P)\)在点\(P(x_0,y_0)\)不连续,称\(P_0\)\(f(x,y)\)间断点,若\(f(x,y)\)在某区域\(G\)每一点都连续,则称\(f(x,y)\)在区域\(G\)上连续. 若\(f(x,y)\)闭域\(G\)每一内点都连续,并在\(G\)边界点\(P_0(x_0,y_0)\)处成立\(\pmb{\lim_{P\to P_0,P\in G}f(P)=f(P_0)}\),则称\(f(P)=f(x,y)\)闭域\(G\)连续. 闭域上连续的二元函数的图形称为连续曲面.

初等多元函数在他们的定义域内都是连续的.

定理:设\(f(P)=f(x,y)\)在平面上一个有界闭区域\(G\)连续,则

(1)\(f(P)\)必在\(G\)上取到最大值最小值及其中间的一切值.

(2)\(f(P)\)\(G\)一致连续,即\(\pmb{\forall\varepsilon>0,\exists\delta>0\ \ (\delta\le\delta_0)}\),当\(\pmb{0<\rho(P_1,P_2)<\delta}\)时,都有\(\pmb{|f(P_1)-f(P_2)|<\varepsilon}\)​.

计算二元(或多元)函数的极限常用方法:

(1)利用不等式,使用两边夹逼定理.

(2)变量替换化为已知极限,或化为一元函数极限,利用极坐标.

(3)利用初等函数的连续性,利用极限的四则运算性质.

(4)利用初等变形,特别是指数形式常可先求其对数的极限.

(5)若事先能看出极限值,可用\(\varepsilon-\delta\)方法进行证明.

证明二元(或多元)函数极限不存在

(1)证明径向路径的极限与辐角(或斜率)有关.

(2)证明某个特殊路径的极限不存在.

(3)证明两个特殊路径的极限存在但不相等.

(4)若二元函数在该点某空心邻域连续,而两个累次极限存在但不相等,则该点极限不存在.

2 偏导数与全微分

2.1 偏导数

偏导数的定义

定义:设函数\(z=f(x,y)\)在点\(P_0(x_0,y_0)\)​的某邻域内有定义,若极限 $$ \lim_{\Delta x\to0}\frac{\Delta_xz}{\Delta x}=\lim_{\Delta x\to0}\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}=\lim_{x\to x_0}\frac{f(x,y_0)-f(x_0,y_0)}{x-x_0} $$ 存在,则称该极限值为函数\(z=f(x,y)\)在点\(P_0(x_0,y_0)\)关于\(x\)偏导数,记为 $$ f'x(x_0,y_0) 或 \frac{\partial z}{\partial x}\bigg| 或 z'}x=x_0\y=y_0\end{split}x| $$ 否则称}} 或 \lim_{\Delta y\to0}\frac{f(x,y+\Delta y)-f(x,y)}{\Delta y\(z=f(x,y)\)在点\(P_0(x_0,y_0)\)\(x\)的偏导数不存在.

若对于某一区域\(G\)上的每一点\((x,y)\),极限\(\lim_{\Delta x\to0}\frac{\Delta_xz}{\Delta x}=\lim_{\Delta x\to0}\frac{f(x+\Delta x,y)-f(x,y)}{\Delta x}\)都存在,它是\(x,y\)的函数,称为函数\(z=f(x,y)\)\(G\)关于\(x\)的偏导函数,简称偏导数,记作 $$ f'_x(x,y)=\frac{\partial }{\partial x}f(x,y)=z'_x=\frac{\partial z}{\partial x} $$ 同理可以定义函数\(y\)的偏导数 $$ f'_y(x,y)=\frac{\partial }{\partial y}f(x,y)=z'_y=\frac{\partial z}{\partial y} $$

偏导数的计算

\(f'_x(x_0,y_0)\)三种方法

(1)按定义.

(2)求导函数\(\frac{d}{dx}f(x,y_0)\),然后把\(x=x_0\)代入.

(3)求偏导函数\(f'_x(x,y)\),然后把\(x=x_0,y=y_0\)代入.

例1\(f(x,y)=x+(y-1)\arcsin{\sqrt{\frac{x}{y}}}\),求\(f'_x(\frac{1}{2},1),f'_y(\frac{1}{2},1)\).

(1) $$ \begin{align} f'x(\frac12,1)&=\lim=1\ f'}\frac{f(x,1)-f(\frac12,1)}{x-\frac12y(\frac12,1)&=\lim=\frac\pi4 \end{align} $$ (2) $$ \begin{align} f'}\frac{f(\frac12,y)-f(\frac12,1)}{y-1}=\lim_{y\to1}\frac{\frac12+(y-1)\arcsin{\sqrt\frac{1}{2y}}-\frac12}{y-1}=\lim_{y\to1}\arcsin{\sqrt\frac1{2y}x(\frac12,1)&=\frac{d}{dx}f(x,1)\bigg|=x'|{x=\frac12}=1 \f'_y(\frac12,1)&=\frac{d}{dy}f(\frac12,y)\bigg|=\frac\pi4 \end{align} $$ (3) $$ \begin{align} f'_x(x,y)&=1+\frac12(y-1)\frac{1}{\sqrt{1-\frac xy}}\cdot\frac{1}{\sqrt{\frac xy}}\cdot\frac{1}{y}\Longrightarrow f'_x(\frac12,1)=1 \f'_y(x,y)&=\arcsin{\sqrt{\frac xy}}+\frac12(y-1)\frac{1}{\sqrt{1-\frac xy}}\cdot\frac{1}{\sqrt{\frac xy}}\cdot\frac{-x}{y^2}\Longrightarrow f'_y(\frac12,1)=\arcsin{\frac{\sqrt2}{2}}=\frac\pi4 \end{align} $$}=\bigg[\frac12+(y-1)\arcsin{\sqrt{\frac{1}{2y}}}\bigg]'\Bigg|_{y=1

偏导数的几何意义

偏导数\(f'_x(x_0,y_0)\)几何意义是表示\(\begin{cases}z=f(x,y)\\y=y_0\end{cases}\)\(M_0\)处的切线对\(Ox\)​轴的斜率.

偏导数\(f'_y(x_0,y_0)\)几何意义是表示\(\begin{cases}z=f(x,y)\\x=x_0\end{cases}\)\(M_0\)处的切线对\(Oy\)轴的斜率.

例1:讨论函数\(f(x,y)=\begin{cases}\frac{2xy}{x^2+y^2},&x^2+y^2\ne0\\0,&x^2+y^2=0\end{cases}\)\((0,0)\)点的偏导数是否存在,函数\(f\)是否连续?

按定义求得 $$ f'x(0,0)=0,f'_y(0,0)=0\Longrightarrow函数f在点(0,0)处的偏导数都存在 $$ 但是 $$ \lim\Longrightarrow函数f在(0,0)处不连续 $$ }}f(x,y)=\lim_{\substack{x\to0\y=kx}}\frac{2k}{1+k^2多元函数中连续与可导无必然联系.

高阶偏导数

一元函数高阶导数一样,可以定义多元函数高阶偏导数.

若函数\(z=f(x,y)\)偏导数\(\frac{\partial z}{\partial x},\frac{\partial z}{\partial y}\)存在,称为一阶偏导数,它们仍是\(x,y\)的函数,如果它们对\(x,y\)的偏导仍存在,得到 $$ \frac{\partial }{\partial x}(\frac{\partial z}{\partial x}),\frac{\partial }{\partial y}(\frac{\partial z}{\partial x}),\frac{\partial }{\partial x}(\frac{\partial z}{\partial y}),\frac{\partial }{\partial y}(\frac{\partial z}{\partial y}) $$ 称为\(z=f(x,y)\)二阶偏导数,记作 $$ \begin{align} z_{xx}''&=\frac{\partial ^2z}{\partial x^2}=\frac{\partial }{\partial x}(\frac{\partial z}{\partial x})=f''{xx}(x,y)\ z)=f''}''&=\frac{\partial ^2z}{\partial y^2}=\frac{\partial }{\partial y}(\frac{\partial z}{\partial y{yy}(x,y)\ z)=f''}''&=\frac{\partial ^2z}{\partial x\partial y}=\frac{\partial }{\partial y}(\frac{\partial z}{\partial x{xy}(x,y)\ z(x,y)\ \end{align} $$ 其中}''&=\frac{\partial ^2z}{\partial y\partial x}=\frac{\partial }{\partial x}(\frac{\partial z}{\partial y})=f''_{yx\(f_{xy}''(x,y)\)\(f_{yx}''(x,y)\)​称为二阶混合偏导数. 二阶及二阶以上的偏导数,统称为高阶偏导数.

定理:若函数\(z=f(x,y)\)二阶偏导(函数)\(f_{xy}''(x,y),f_{yx}''(x,y)\)都在\((x_0,y_0)\)连续,则\(f_{xy}''(x_0,y_0)=f_{yx}''(x_0,y_0)\)​.

2.2 全微分

全微分的概念

定义:若二元函数\(z=f(x,y)\)在点\((x,y)\)处的全增量\(\Delta z=f(x+\Delta x,y+\Delta y)-f(x,y)\)可以表示为 $$ \Delta z=A\Delta x+B\Delta y+o(\rho) (\rho=\sqrt{\Delta x^2+\Delta y^2}\to0) $$ 其中,\(A,B\)与变量的增量\(\Delta x,\Delta y\)无关,而仅与\(x,y\)有关,则称函数\(z=f(x,y)\)在点\((x,y)\)处可微. 其中\(\Delta z\)的线性主部\(A\Delta x+B\Delta y\)称为函数\(z=f(x,y)\)在点\((x,y)\)处的全微分,记作\(dz\),即 $$ dz=A\Delta x+B\Delta y $$ 函数\(z=f(x,y)\)在点\(P(x_0,y_0)\)处可微的充要条件 $$ \lim_{\substack{\Delta x\to0\\Delta y\to0}}\frac{\Delta z-\big[f'_x(x,y)\Delta x+f'_y(x,y)\Delta y\big]}{\sqrt{\Delta x^2+\Delta y^2}}=0 $$

可微的必要条件、充分条件

定理1:若\(z=f(x,y)\)在点\((x,y)\)可微,则\(z=f(x,y)\)在点\((x,y)\)​处连续,反之不成立.

定理2:若\(z=f(x,y)\)在点\((x,y)\)可微,则\(z=f(x,y)\)在点\((x,y)\)两个偏导数\(f'_x(x,y),f'_y(x,y)\)存在,且\(A=f'_x(x,y),B=f'_y(x,y)\)​.

例1:研究\(f(x,y)=\begin{cases}\frac{2xy}{x^2+y^2},&x^2+y^2\ne0\\0,&x^2+y^2=0\end{cases}\) 在原点的可微性.

验证多元函数不可微有下述方法:

(1)若\(f(x,y)\)在点\((x,y)\)不连续,则\(f\)在点\((x,y)\)​处不可微.

(2)若\(f(x,y)\)在点\((x,y)\)至少有一个偏导数不存在,则\(f\)在点\((x,y)\)不可微.

(3)若\(f(x,y)\)在点\((x,y)\)处两个偏导数都存在,但\(\lim_{\substack{\Delta x\to0\\\Delta y\to0}}\frac{\Delta z-dz}{\rho}\)极限不存在极限存在但不为零,则\(f\)在点\((x,y)\)​处不可微.

定理3:若函数\(z=f(x,y)\)偏导数\(f_x'(x,y),f_y'(x,y)\)在点\((x_0,y_0)\)连续,则函数\(z=f(x,y)\)在点\((x_0,y_0)\)可微.

全微分四则运算与计算

\(u,v\)都是多元函数,且具有连续偏导数,则

(1) \(d(u\pm v)=du\pm dv\).

(2) \(d(uv)=vdu+udv\);特别地\(d(cu)=cdu\)\(c\)​是常数).

(3) \(d(\frac{u}{v})=\frac{vdu-udv}{v^2}(v\ne0)\).

下面对(2)做出证明

\(u=u(x,y),v=v(x,y)\),有条件知,\(uv\)可微,且 $$ \begin{align} d(uv)&=\frac{\partial }{\partial x}(uv)dx+\frac{\partial }{\partial y}(uv)dy=(\frac{\partial u}{\partial x}v+u\frac{\partial v}{\partial x})dx+(\frac{\partial u}{\partial y}v+u\frac{\partial v}{\partial y})dy\ &=(\frac{\partial u}{\partial x}dx+\frac{\partial u}{\partial y}dy)v+(\frac{\partial v}{\partial x}dx+\frac{\partial v}{\partial y}dy)u=vdu+udv \end{align} $$

全微分在近似计算和误差估计中的应用

全微分的定义,当\(|\Delta x|,|\Delta y|\)很小时,有\(\Delta z\approx dz=f_x'(x,y)\Delta x+f_y'(x,y)\Delta y\). 得 $$ f(x+\Delta x,y+\Delta y)-f(x,y)\approx f_x'(x,y)\Delta x+f_y'(x,y)\Delta y $$ 设函数\(z=f(x,y)\),若测得\(x\)近似值\(x_0\)\(y\)近似值\(y_0\),用测量的近似值\(x_0,y_0\)分别代替\(x,y\)来计算函数值\(z\),就会引起绝对误差 $$ |\Delta z|=|f(x,y)-f(x_0,y_0)|\approx|dz|=|f_x'(x_0,y_0)\Delta x+f_y'(x_0,y_0)\Delta y|\ \le|f_x'(x_0,y_0)||\Delta x|+|f_y'(x_0,y_0)||\Delta y|\le|f_x'(x_0,y_0)|\delta_1 +|f_y'(x_0,y_0)|\delta_2 $$ 因此 $$ \bigg|\frac{\Delta z}{z_0}\bigg|\approx\bigg|\frac{dz}{z_0}\bigg|\le\Bigg|\frac{f_x'(x_0,y_0)}{f(x_0,y_0)}\Bigg|\delta_1+\Bigg|\frac{f_y'(x_0,y_0)}{f(x_0,y_0)}\Bigg|\delta_2 $$

例1:计算\(1.007^{2.98}\).

:设\(f(x,y)=x^y\Longrightarrow f_x'(x,y)=yx^{y-1},f_y'(x,y)=x^y\ln{x}\),有 $$ \begin{align} 1.007^{2.98}&=f(1.007,2.98)=f(1+0.007,3-0.02)\ &\approx f(1,3)+f_x'(1,3)\times0.007+f_y'(1,3)\times(-0.02)\ &=1+3\times0.007+1^3\times\ln{1}\times(-0.02)=1.021 \end{align} $$

计算原函数

二元函数\(u(x,y)\)存在二阶连续偏导,且 $$ du(x,y)=P(x,y)dx+Q(x,y)dy $$ 则\(P(x,y)=\frac{\partial u}{\partial x},Q(x,y)=\frac{\partial u}{\partial y}\),得 $$ \frac{\partial P}{\partial y}=\frac{\partial ^2u}{\partial x\partial y}=\frac{\partial ^2u}{\partial y\partial x}=\frac{\partial Q}{\partial x} $$ 反之,若\(P(x,y),Q(x,y)\)在区域D上存在一阶连续偏导,且\(\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}\),则存在二元函数\(u(x,y)\)满足 $$ du(x,y)=P(x,y)dx+Q(x,y)dy $$

例1:当\(y>0\)时,\(u(x,y)\)可微,且 $$ du(x,y)=(\frac{y}{x2+y2}+xy2)dx+(-\frac{x}{x2+y2}+x2y+2y)dy $$ 求\(u(x,y)\).

\(du(x,y)\stackrel{\triangle}{=}P(x,y)dx+Q(x,y)dy\),则 $$ \begin{align} &P(x,y)=\frac{\partial u}{\partial x}=\frac{y}{x2+y2}+xy^2\ &Q(x,y)=\frac{\partial u}{\partial y}=-\frac{x}{x2+y2}+x^2y+2y\ &\Longrightarrow u(x,y)=\int(\frac{y}{x2+y2}+xy2)dx=\arctan{\frac{x}{y}}+\frac{1}{2}x2y^2+\psi(y)\ &\Longrightarrow\frac{\partial u}{\partial y}=\frac1{1+(\frac xy)^2}\cdot(-\frac x{y2})+x2y+\psi'(y)=-\frac{x}{x2+y2}+x^2y+2y\ &\Longrightarrow\psi'(y)=2y\Longrightarrow\psi(y)=y^2+C\ &\Longrightarrow u(x,y)=\arctan{\frac xy}+\frac12x2y2+y^2+C \end{align} $$

3 复合函数微分法

3.1 复合函数的偏导公式

\(z=f(u,v)\)定义在\(uv\)平面\(\Omega_{uv}\)上,函数\(u=\varphi(x,y),v=\psi(x,y)\)定义在\(xy\)平面\(\Omega_{xy}\)上 $$ \big{(u,v):u=\varphi(x,y),v=\psi(x,y),(x,y\in\Omega_{xy})\big}\subset\Omega_{uv} $$ 于是\(z\)是以\(f\)外函数\(\varphi,\psi\)内函数复合函数\(z=f[\varphi(x,y),\psi(x,y)]\)\(x,y\)自变量\(u,v\)中间变量.

定理:若函数\(u=\varphi(x,y),v=\psi(x,y)\)在点\((x,y)\)偏导数都存在\(z=f(u,v)\)在点\((u,v)=(\varphi(x,y),\psi(x,y))\)可微,则复合函数\(z=f[\varphi(x,y),\psi(x,y)]\)在点\((x,y)\)处的偏导数存在,且 $$ \frac{\partial z}{\partial x}=\frac{\partial z}{\partial u}\cdot\frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\cdot\frac{\partial v}{\partial x}\ \frac{\partial z}{\partial y}=\frac{\partial z}{\partial u}\cdot\frac{\partial u}{\partial y}+\frac{\partial z}{\partial v}\cdot\frac{\partial v}{\partial y} $$ :设\(z=f(x,u,v),u=u(x),v=v(x)\),这里\(z\)是通过三个中间变量\(x\)一元复合函数,则 $$ \frac{dz}{dx}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial u}\cdot\frac{du}{dx}+\frac{\partial f}{\partial v}\cdot\frac{dv}{dx} (全导数) $$

例1:设函数\(W=F(x,y,z),z=f(x,y),y=\varphi(x)\),其中\(F,f\)具有连续的偏导数,\(\varphi\)可导,求\(\large{\frac{dW}{dx}}\).

: $$ \frac{dW}{dx}=F_x'+F_y'\varphi'+F_z'\big[f_x'+f_y'\cdot\varphi'\big] $$ :此处\(W\)\(x\)一元复合函数,因此\(\large{\frac{dW}{dx}=\frac{\partial W}{\partial x}}\).

例2:设\(z=f(x,y,u),u=u(x,y)\),请问:\(\Large{\frac{\partial z}{\partial x}=\frac{\large\partial f}{\partial x}}\)

: $$ \frac{\partial z}{\partial x}=\frac{\partial f}{\partial x}\cdot\frac{dx}{dx}+\frac{\partial f}{\partial y}\cdot\frac{\partial y}{\partial x}+\frac{\partial f}{\partial u}\cdot\frac{\partial u}{\partial x}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial u}\cdot\frac{\partial u}{\partial x} $$ \(\large{\frac{\partial z}{\partial x}}\)复合函数\(z=f[x,y,u(x,y)]\)自变量\(x\)偏导,而\(\large{\frac{\partial f}{\partial x}}\)是外函数,\(f(x,y,u)\)中间变量\(x\)偏导,这时\(y,u\)​都看成常数.

3.2 复合函数的全微分

一阶微分不变性

\(z=z(x,y)\)\(x,y\)自变量,且\(z=z(x,y)\)可微,则其全微分为 $$ dz=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy $$ 设\(z=z(x,y),x=x(s,t),y=y(s,t)\)都具有连续的偏导数,则复合函数\(z=z(x(s,t),y(s,t))\)可微,且 $$ dz=\frac{\partial z}{\partial s}ds+\frac{\partial z}{\partial t}dt $$ 证明: $$ \begin{cases} \large\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x}\cdot\frac{\partial x}{\partial s}+\frac{\partial z}{\partial y}\cdot\frac{\partial y}{\partial s}\ \large\frac{\partial z}{\partial t}=\frac{\partial z}{\partial x}\cdot\frac{\partial x}{\partial t}+\frac{\partial z}{\partial y}\cdot\frac{\partial y}{\partial t} \end{cases} $$

\[ \begin{align} \Longrightarrow \frac{\partial z}{\partial s}ds+\frac{\partial z}{\partial t}dt&=(\frac{\partial z}{\partial x}\cdot\frac{\partial x}{\partial s}+\frac{\partial z}{\partial y}\cdot\frac{\partial y}{\partial s})ds+(\frac{\partial z}{\partial x}\cdot\frac{\partial x}{\partial t}+\frac{\partial z}{\partial y}\cdot\frac{\partial y}{\partial t})dt\\ &=\frac{\partial z}{\partial x}(\frac{\partial x}{\partial s}ds+\frac{\partial x}{\partial t}dt)+\frac{\partial z}{\partial y}(\frac{\partial y}{\partial s}ds+\frac{\partial y}{\partial t}dt)=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy \end{align} \]

上述表明虽然\(x,y\)不是自变量,但全微分的形式与当\(x,y\)​是自变量时是一样的,这就是全微分的一阶微分形式不变性.

换句话说,若\(z=z(u,v)\),且\(dz=\varphi(u,v)du+\psi(u,v)dv\),则 $$ \frac{\partial z}{\partial u}=\varphi(u,v),\frac{\partial z}{\partial v}=\psi(u,v) $$

(1)一元、多元函数都具有高阶微分不变性.

(2)当\(x,y\)自变量时,\(dx,dy\)各自取值,

​ 当\(x,y\)中间变量时,它们的取值由\(s,t,ds,dt\)确定.

4 隐函数的偏导数

4.1 隐函数的偏导数

隐函数存在定理

定理1:若函数\(F(x,y,z)\)满足下列条件

(1)函数\(F\)在以\(P_0(x_0,y_0,z_0)\)内点的某一区域\(D\subset R^3\)连续.

(2)\(F(x_0,y_0,z_0)=0\).(初始条件)

(3)在\(D\)内存在连续的偏导数\(F'_x(x,y,z),F_y'(x,y,z),F_z'(x,y,z)\).

(4)\(F_z'(x_0,y_0,z_0)\ne0\).

则在点\(P_0\)某邻域\(U(P_0)\)唯一确定一个具有连续导数的函数\(z=f(x,y)\),且满足\(z_0=f(x_0,y_0),F(x,y,f(x,y))\equiv0\),且有\(\large\frac{\partial z}{\partial x}=-\frac{F_x'(x,y,z)}{F_z'(x,y,z)},\frac{\partial z}{\partial y}=-\frac{F_y'(x,y,z)}{F_z'(x,y,z)}\)​​.

说明:对方程\(F(x,y,z(x,y))\equiv0\)两边关于\(x,y\)偏导得 $$ F_x'\cdot1+F_z'\cdot\frac{\partial z}{\partial x}=0\Longrightarrow\frac{\partial z}{\partial x}=-\frac{F_x'}{F_z'}\ F_y'\cdot1+F_z'\cdot\frac{\partial z}{\partial y}=0\Longrightarrow\frac{\partial z}{\partial y}=-\frac{F_y'}{F_z'} $$ \(\large\frac{\partial z}{\partial x}=-\frac{F_x'}{F_z'},\frac{\partial z}{\partial y}=-\frac{F_y'}{F_z'}\)仅适用于\(F(x,y,z)=0\),对于一般形式不适用,一般形式只能用复合函数求偏导一阶微分不变性来求.

4.2 隐函数组偏导数

隐函数组存在定理

定理:设函数\(F(x,y,u,v),G(x,y,u,v)\)在点\(P_0(x_0,y_0,u_0,v_0)\)的某邻域内满足

(1)\(F(x_0,y_0,u_0,v_0)=G(x_0,y_0,u_0,v_0)=0\).(初始条件

(2)\(F,G\)存在一阶连续偏导数\(F_x',F_y',F_u',F_v',G_x',G_y',G_u',G_v'\)​.

(3)在点\(P_0\)处行列式\(J\stackrel{\small\triangle}{=}\frac{\partial (F,G)}{\partial (u,v)}=\left|\begin{array}{c} F_u' &F_v'\\G_u' &G_v'\end{array}\right|\ne0\).(Jacobi行列式

则方程组\(\begin{cases}F(x,y,u,v)=0\\G(x,y,u,v)=0\end{cases}\) 在点\(P_0(x_0,y_0,u_0,v_0)\)的某邻域唯一确定一组函数组\(\begin{cases}u=u(x,y)\\v=v(x,y)\end{cases}\)满足

(1)\(u_0=u(x_0,y_0),v_0=v(x_0,y_0)\).

(2)\(F(x,y,u(x,y),v(x,y))=0,G(x,y,u(x,y),v(x,y))=0\).

(3)\(u=u(x,y),v=v(x,y)\)​具有一阶连续偏导数: $$ \frac{\partial u}{\partial x}=-\frac{1}{J}\cdot\frac{\partial (F,G)}{\partial (x,v)}=-\frac{\left|\begin{array}{c}F_x' &F_v'\G_x' &G_v'\end{array}\right|}{\left|\begin{array}{c} F_u' &F_v'\G_u' &G_v'\end{array}\right|}, \frac{\partial v}{\partial x}=-\frac{1}{J}\cdot\frac{\partial (F,G)}{\partial (u,x)}=-\frac{\left|\begin{array}{c}F_u' &F_x'\G_u' &G_x'\end{array}\right|}{\left|\begin{array}{c} F_u' &F_v'\G_u' &G_v'\end{array}\right|}\ \frac{\partial u}{\partial y}=-\frac{1}{J}\cdot\frac{\partial (F,G)}{\partial (y,v)}=-\frac{\left|\begin{array}{c}F_y' &F_v'\G_y' &G_v'\end{array}\right|}{\left|\begin{array}{c} F_u' &F_v'\G_u' &G_v'\end{array}\right|}, \frac{\partial v}{\partial y}=-\frac{1}{J}\cdot\frac{\partial (F,G)}{\partial (u,y)}=-\frac{\left|\begin{array}{c}F_u' &F_y'\G_u' &G_y'\end{array}\right|}{\left|\begin{array}{c} F_u' &F_v'\G_u' &G_v'\end{array}\right|} $$

以下仅有关\(\large\frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial v}{\partial x},\frac{\partial v}{\partial y}\)计算公式推导: $$ \begin{cases} F(x,y,u,v)=0\ &\Longrightarrow\ G(x,y,u,v)=0 \end{cases} \begin{cases} \begin{align} F_x'+F_u'\cdot\frac{\partial u}{\partial x}+F_v'\cdot\frac{\partial v}{\partial x}&=0\ G_x'+G_u'\cdot\frac{\partial u}{\partial x}+G_v'\cdot\frac{\partial v}{\partial x}&=0 \end{align} \end{cases} $$

\[ \Longrightarrow \begin{cases} \Large{\frac{\partial u}{\partial x}}=-\LARGE\frac{\frac{\partial (F,G)}{\partial (x,v)}}{\frac{\partial (F,G)}{\partial (u,v)}}\\ \Large{\frac{\partial v}{\partial x}}=-\LARGE\frac{\frac{\partial (F,G)}{\partial (u,x)}}{\frac{\partial (F,G)}{\partial (u,v)}}\\ \end{cases} \]

解得\(\large\frac{\partial u}{\partial x},\frac{\partial v}{\partial x}\)同理可得\(\large\frac{\partial u}{\partial y},\frac{\partial v}{\partial y}\)​.

:在实际计算时,一般用公式直接求.

例1:设\(u=f(x,y,z),\psi(x^2,e^y,z)=0,y=\sin{x}\),其中\(f,\psi\)具有连续的偏导数且\(\psi_3'\ne0\),求\(\large\frac{du}{dx}\).

法一

\[ \begin{align} u=f(x,y,z)&\Longrightarrow \frac{du}{dx}=f_x'+f_y'\frac{dy}{dx}+f_z'\frac{dz}{dx}&(1)\\ y=\sin x&\Longrightarrow \frac{dy}{dx}=\cos x &(2)\\ \psi(x^2,e^y,z)=0&\Longrightarrow\psi_1'\cdot2x+\psi_2'\cdot e^y\cdot\frac{dy}{dx}+\psi_3'\cdot\frac{dz}{dx}=0\\ &\Longrightarrow\frac{dz}{dx}=-\frac1{\psi_3'}(2x\psi_1'+e^y\cos x\psi_2')&(3) \end{align} \]

\((2),(3)\)代入\((1)\): $$ \frac{du}{dx}=f_x'+f_y'\cos x-f_z'\frac1{\psi_3'}(2x\psi_1'+e^y\cos x\psi_2') $$

法二 一阶微分不变性+微分四则运算

\[ \begin{align} u=f(x,y,z)&\Longrightarrow du=f_x'dx+f_y'dy+f_z'dz&(4)\\ \psi(x^2,e^y,z)=0&\Longrightarrow \psi_1'd(x^2)+\psi_2'd(e^y)+\psi_3'dz=0&(5)\\ &\Longrightarrow dz=-\frac1{\psi_3'}(2x\psi_1'+e^y\cos x\psi_2')dx&(6) \end{align} \]

\((5),(6)\)代入\((4)\): $$ du=[f_x'+f_y'\cos x-f_z'\frac1{\psi_3'}(2x\psi_1'+e^y\cos x\psi_2')]dx\ \Longrightarrow\frac{du}{dx}=f_x'+f_y'\cos x-f_z'\frac1{\psi_3'}(2x\psi_1'+e^y\cos x\psi_2') $$

4.3 反函数组的偏导数

\[ {\begin{cases} x=x(u,v)\\ y=y(u,v) \end{cases} \iff \begin{cases} u=u(x,y)\\ v=v(x,y) \end{cases} \ \ \ \ \ \ (反函数组)}\\ \begin{cases} F(x,y,u,v){\stackrel{\small\triangle}{=}} x-x(u,v)\\ G(x,y,u,v){\stackrel{\small\triangle}{=}} y-y(u,v) \end{cases} \Longrightarrow \begin{cases} F_u'=-x_u';F_v'=-x_v'\\ G_u'=-y_u';G_v'=-y_v' \end{cases} \Longrightarrow \frac{\partial (x,y)}{\partial (u,v)}=\frac{\partial (F,G)}{\partial (u,v)} \]

隐函数组存在定理\(\large\Longrightarrow\frac{\partial (F,G)}{\partial (u,v)}\ne0\Longrightarrow\frac{\partial (x,y)}{\partial (u,v)}\ne0\Longrightarrow\)反函数组的存在性. $$ {\begin{cases} x=x(u,v)\ y=y(u,v) \end{cases} \iff \begin{cases} x-x(u,v)\equiv0\ y-y(u,v)\equiv0 \end{cases} \iff \begin{cases} x-x[u(x,y),v(x,y)]\equiv0\ y-y[u(x,y),v(x,y)]\equiv0 \end{cases}}\ {\Longrightarrow \begin{cases} 1-x_u'u_x'-x_v'v_x'=0\ 0-y_u'u_x'-y_v'v_x'=0\ 0-x_u'u_y'-x_v'v_y'=0\ 1-y_u'u_y'-y_v'v_y'=0 \end{cases} \Longrightarrow \begin{cases} x_u'u_x'+x_v'v_x'=1\ y_u'u_x'+y_v'v_x'=0\ x_u'u_y'+x_v'v_y'=0\ y_u'u_y'+y_v'v_y'=1 \end{cases}}\ \frac{\partial (u,v)}{\partial (x,y)}\cdot\frac{\partial (x,y)}{\partial (u,v)}=\left|\begin{array}{c}u_x' &v_x'\u_y' &v_y'\end{array}\right|\cdot\left|\begin{array}{c}x_u' &x_y'\y_u' &y_v'\end{array}\right|=\left|\begin{array}{c}x_u'u_x'+x_v'v_x' &y_u'u_x'+y_v'v_x'\x_u'u_y'+x_v'v_y' &y_u'u_y'+y_v'v_y'\end{array}\right|=\left|\begin{array}{c}1 &0\0 &1\end{array}\right|=1 $$ :这结果与一元函数反函数的导数公式\({\large\frac{dy}{dx}\cdot\frac{dx}{dy}}=1\)一致.

5 场的方向导数和梯度

5.1 场的概念

在数学上是指一个向量到另一个向量映射.

5.2 场的方向导数

定义:设三元函数\(u\)\(P_0(x_0,y_0,z_0)\)某邻域\(u(P_0)\subset R^3\)有定义\(l\)为从点\(P_0\)出发的射线\(P(x,y,z)\)\(l\)上且含于\(u(P_0)\)内的任一点,以\(\rho\)表示\(P\)\(P_0\)两点的距离,若极限 $$ \lim_{\rho\to0}\frac{u(P)-u(P_0)}{\rho}=\lim_{\rho\to0}\frac{\Delta_{\vec i}u}{\rho} $$ 存在,则称此极限为函数\(u\)在点\(P_0\)沿方向\(\vec l\)方向导数,记作\({\large\frac{\partial u}{\partial \vec l}}\Big|_{P_0}\).

定理:若函数\(u\)在点\(P_0(x_0,y_0,z_0)\)可微,则\(u\)在点\(P_0\)处沿任一方向\(\vec l\)方向导数存在,且 $$ \frac{\partial u}{\partial l}\Bigg|{P_0}=\frac{\partial u}{\partial x}\Bigg|\Bigg|}\cos\alpha+\frac{\partial u}{\partial y{P_0}\cos\beta+\frac{\partial u}{\partial z}\Bigg|\cos\gamma $$ 其中,\(\vec l=(\cos\alpha,\cos\beta,\cos\gamma)\)​​.

例1:讨论\(f(x,y)=\sqrt{x^2+y^2}\)\((0,0)\)处的任何方向\(\vec l\)的方向导数以及两个偏导数的存在性.

\[ \frac{\partial f}{\partial \vec l}\Bigg|_{(0,0)}=\lim_{\rho\to0}\frac{f(\Delta x,\Delta y)-f(0,0)}\rho=\lim_{\rho\to0}\frac{\sqrt{(\Delta x)^2+(\Delta y)^2}}{\sqrt{(\Delta x)^2+(\Delta y)^2}}=1 \]

方向导数存在. $$ \frac{\partial f}{\partial x}\Bigg|{(0,0)}=\lim\ \frac{\partial f}{\partial y}\Bigg|}\frac{f(\Delta x,0)-f(0,0)}{\Delta x}=\lim_{\Delta x\to 0}\frac{\sqrt{(\Delta x)^2}}{\Delta x{(0,0)}=\lim $$ 偏导数}\frac{f(0,\Delta y)-f(0,0)}{\Delta y}=\lim_{\Delta y\to 0}\frac{\sqrt{(\Delta y)^2}}{\Delta y不存在.

例2:讨论\(f(x,y)=\begin{cases}\large\frac{xy}{x^2+y^2},&x^2+y^2\ne0\\0,&x^2+y^2=0\end{cases}\)\((0,0)\)处的方向导数以及两个偏导数的存在性.

\[ \frac{\partial f}{\partial \vec l}\Bigg|_{(0,0)}=\lim_{\rho\to0}\frac{f(\Delta x,\Delta y)-f(0,0)}\rho=\lim_{\rho\to0}\frac{\large\frac{\Delta x\Delta y}{\rho^2}}\rho=\lim_{\rho\to0}\frac{\Delta x}\rho\cdot\frac{\Delta y}\rho\cdot\frac1\rho \]

方向导数不存在. $$ \frac{\partial f}{\partial x}\Bigg|{(0,0)}=\lim=0\ \frac{\partial f}{\partial y}\Bigg|}\frac{f(\Delta x,0)-f(0,0)}{\Delta x}=\lim_{\Delta x\to 0}\frac{0}{\Delta x{(0,0)}=\lim=0 $$ 偏导数}\frac{f(0,\Delta y)-f(0,0)}{\Delta y}=\lim_{\Delta y\to 0}\frac{0}{\Delta y存在.

结论偏导数存在\(\not\Leftrightarrow\)方向导数存在.

5.3 梯度

定理:若函数\(u\)在点\(P(x,y,z)\)可微,则\(u\)在点\(P\)处沿任一方向\(\vec l=(\cos\alpha,\cos\beta,\cos\gamma)\)方向导数都存在,且 $$ \frac{\partial u}{\partial \vec l}=\frac{\partial u}{\partial x}\cdot\cos\alpha+\frac{\partial u}{\partial y}\cdot\cos\beta+\frac{\partial u}{\partial z}\cdot\cos\gamma=(\frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial u}{\partial z})\cdot(\cos\alpha,\cos\beta,\cos\gamma) $$

定义:矢量\({\large\frac{\partial u}{\partial x}}\vec i+{\large\frac{\partial u}{\partial y}}\vec j+{\large\frac{\partial u}{\partial z}}\vec k=({\large\frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial u}{\partial z}})\)称为函数\(u(P)\)在点\(P\)处的梯度,记为\(\pmb{grad}\ u\),即 $$ \pmb {grad} u\stackrel{\small\triangle}{=}\frac{\partial u}{\partial x}\vec i+\frac{\partial u}{\partial y}\vec j+\frac{\partial u}{\partial z}\vec k=(\frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial u}{\partial z}) $$ 梯度这个矢量实质上是和坐标系的选择无关的.

梯度的运算法则:设\(u,v\)可微,\(\alpha,\beta\)为常数,则

(1)\(\pmb{grad}\ (\alpha u+\beta v)=\alpha\pmb{grad}\ u+\beta\pmb{grad}\ v\).

(2)\(\pmb{grad}\ (uv)=v\pmb{grad}\ u+u\pmb{grad}\ v\).

(3)\(\pmb{grad}\ f(u)=f'(u)\pmb{grad}\ u\).

6 多元函数的极值及应用

6.1 多元函数的泰勒公式

定理(泰勒定理):若函数\(f\)在点\(P_0(x_0,y_0)\)邻域\(U(P_0)\)内有直到\(\pmb{n+1}\)连续偏导数,则对\(U(P_0)\)任一点\((x_0+h,y_0+k)\)存在相应\(\theta\in(0,1)\),使得 $$ \begin{align} &f(x_0+h,y_0+k)=f(x_0,y_0)+\Big(h\frac{\partial }{\partial x}+k\frac\partial {\partial y}\Big)f(x_0,y_0)\ &+\frac1{2!}\Big(h\frac{\partial }{\partial x}+k\frac\partial {\partial y}\Big)^2f(x_0,y_0)+···+\frac1{n!}\Big(h\frac{\partial }{\partial x}+k\frac\partial {\partial y}\Big)^nf(x_0,y_0)\ &+\frac1{(n+1)!}\Big(h\frac{\partial }{\partial x}+k\frac\partial {\partial y}\Big)^{n+1}f(x_0+\theta h,y_0+\theta k) \end{align} $$ 上式称为二元函数\(f\)在点\(P_0\)\(\pmb n\)阶泰勒公式.

(1)拉格朗日余项 $$ R_n\stackrel{\small\triangle}{=}\frac1{(n+1)!}\Big(h\frac{\partial }{\partial x}+k\frac\partial {\partial y}\Big)^{n+1}f(x_0+\theta h,y_0+\theta k),(0<\theta<1) $$ \(R_n\)​称为泰勒公式拉格朗日余项.

(2)当\((x_0,y_0)=(0,0)\)​时,则称为二元函数麦克劳林公式.

(3)二元函数的中值公式 $$ \begin{align} f(x_0+h,y_0+k)-f(x_0,y_0)&=\Big(h\frac{\partial }{\partial x}+k\frac\partial {\partial y}\Big)f(x_0+\theta h,y_0+\theta k)\ &=f_x'(x_0+\theta h,y_0+\theta k)h+f_y'(x_0+\theta h,y_0+\theta k)k \end{align} $$ 这就是二元函数拉格朗日中值公式.

(4)推论:设\(f(x,y)\)在区域\(G\)上具有连续的一阶偏导.

(i)若\(f_x'(x,y)\equiv0,(x,y)\in G\),则\(f(x,y)\)\(G\)上仅是\(\pmb y\)的函数.

(ii)若\(f_y'(x,y)\equiv0,(x,y)\in G\),则\(f(x,y)\)\(G\)上仅是\(\pmb x\)的函数.

(iii)若\(f_x'(x,y)\equiv0,f_y'(x,y)\equiv0,(x,y)\in G\),则\(f(x,y)\)\(G\)​上是常值函数.

二元函数的中值定理:设函数\(f(x,y)\)凸开域\(D\)连续,在\(D\)的所有内点可微,则对\(D\)任意两点\(P(x_0,y_0),Q(x_0+h,y_0+h),\exists \theta\in(0,1)\),使得 $$ f(x_0+h,y_0+k)-f(x_0,y_0)=f_x'(x_0+\theta h,y_0+\theta k)h+f_y'(x_0+\theta h,y_0+\theta k)k $$

例1:计算\(\lim_{\substack{x\to0\\y\to0}}\frac{\ln{x^2+e^{y^2}}}{x^2+y^2}\).

\[ f(x,y)\stackrel{\small\triangle}{=}\ln(x^2+e^{y^2})\Longrightarrow \begin{cases} f_x'(x,y)=\large\frac{2x}{x^2+e^{y^2}}\\ f_y'(x,y)=\large\frac{2ye^{y^2}}{x^2+e^{y^2}} \end{cases}\\ \Longrightarrow \begin{cases} f_{xx}''(x,y)=\large\frac{2e^{y^2}-2x^2}{(x^2+e^{y^2})^2}\\ f_{xy}''(x,y)=-\large\frac{4xye^{y^2}}{(x^2+e^{y^2})^2}\\ f_{yy}''(x,y)=\large\frac{(2+4y^2)e^{y^2}(x^2+e^{y^2})-4y^2e^{y^2}}{(x^2+e^{y^2})^2} \end{cases} \Longrightarrow \begin{cases} f_x'(0,0)=f_y'(0,0)=0\\ f_{xy}''(0,0)=0\\ f_{xx}''(0,0)=f_{yy}''(0,0)=2 \end{cases} \]

泰勒公式得 $$ f(x,y)=(x2+y2)+o(\rho2) (\rho\stackrel{\small\triangle}{=}\sqrt{x2+y2}\to0)\Longrightarrow\lim_{\substack{x\to0\y\to0}}\frac{\ln(x2+e{y2})}{x2+y2}=1 $$

6.2 多元函数的极值

多元函数的极值概念

极值定义:设函数\(z=f(x,y)\)在点\(P_0(x_0,y_0)\)某邻域\(U(P_0)\)有定义\(\forall P(x,y)\in U(P_0)\),都有\(f(P)\le f(P_0)\)\(f(P)\ge f(P_0)\),则称函数\(f\)在点\(P_0\)取到极大(极小)值,点\(P_0\)称为\(f\)​的极大(极小)值点.

极值的必要条件:若函数\(f\)在点\(P_0(x_0,y_0)\)存在偏导数且在\(P_0\)取极值,则有 $$ f_x'(x_0,y_0)=0,f_y'(x_0,y_0)=0 $$ 反之,若函数\(f\)在点\(P_0\)满足上式,则称点\(P_0\)\(f\)​的稳定点驻点.

(1)上述定理指出,若\(f\)存在偏导数,则其极值点必是稳定点.

(2)稳定点不一定极值点.

(3)函数\(f(x,y)\)在点\((x_0,y_0)\)取极值\(f(x,y)\)偏导数只有两种情形:

(i)\(f_x'(x_0,y_0),f_y'(x_0,y_0)\)存在,则\(f_x'(x_0,y_0)=0,f_y'(x_0,y_0)=0\),即点\(P_0(x_0,y_0)\)稳定点.

(ii)\(f_x'(x_0,y_0),f_y'(x_0,y_0)\)至少有一个不存在.

极值的充分条件:设函数\(z=f(x,y)\)在点\((x_0,y_0)\)的某邻域\(U(P_0)\)连续,且有一阶与二阶连续偏导数,若\(f_x'(x_0,y_0)=0,f_y'(x_0,y_0)=0\),设\(A=f_{xx}''(x_0,y_0),B=f_{xy}''(x_0,y_0),C=f_{yy}''(x_0,y_0)\),则

(1)当\(B^2-AC<0\)时,\(f(x_0,y_0)\)一定为极值,并且

​ 当\(A(或C)>0\)时,\(f(x_0,y_0)\)极小值

​ 当\(A(或C)<0\)时,\(f(x_0,y_0)\)极大值.

(2)当\(B^2-AC>0\)时,\(f(x_0,y_0)\)不是极值.

(3)当\(B^2-AC=0\)时,无法判断,要进一步研究.

多元函数的最大值、最小值

\(f(P)\)有界闭区域\(G\)连续\(\Longrightarrow f(P)\)\(G\)一定能取到最大(小)值.

\(\iff \exists P_1,P_2\in G,f(P_1)=m,f(P_2)=M,\forall P\in G\),有\(m\le f(P)\le M\).

最值在

边界点取到(边界函数值最大值最小值点).

内部取到:一定是极值点稳定点偏导数不存在点).

条件极值

条件极值极值点搜索范围受到条件的限制.

拉格朗日乘数法拉格朗日乘子法):

条件极值问题:\(\max(\min)u=f(x,y,z)&(目标函数)\\s.t.\ G(x,y,z)=0&(约束函数)\).

\(f\)\(G\)具有连续的偏导数\({\large\frac{\partial G}{\partial z}}\ne0\)隐函数存在定理得方程\(G(x,y,z)=0\)确定隐函数\(z=z(x,y)\).

\(z=z(x,y)\)代入目标函数\(f\) $$ \begin{align} &条件极值问题\ u=&f(x,y,z)极值\ s.t. & G(x,y,z)=0 \end{align} \Longrightarrow \begin{aligned} &无条件极值问题\ u=&f(x,y,z(x,y))极值 \end{aligned} $$ 设\((x_0,y_0)\)\(u=f(x,y,z(x,y))\)极值点\((z_0=z(x_0,y_0))\),满足二元函数的极值必要条件 $$ \begin{cases} {\large\frac{\partial u}{\partial x}}=0\ {\large\frac{\partial u}{\partial y}}=0 \end{cases} \Longrightarrow \begin{cases} {\large\frac{\partial u}{\partial x}}={\large f_x'+f_z'\frac{\partial z}{\partial x}}={\large f_x'-\frac{G_x'}{G_z'}f_z'}=0\ {\large\frac{\partial u}{\partial y}}={\large f_y'+f_z'\frac{\partial z}{\partial y}}={\large f_y'-\frac{G_y'}{G_z'}f_z'}=0 \end{cases} $$ \(\iff\)所求问题的\((x_0,y_0,z_0)\)必须满足关系式 $$ \frac{f_x'(x_0,y_0,z_0)}{G_x'(x_0,y_0,z_0)}=\frac{f_y'(x_0,y_0,z_0)}{G_y'(x_0,y_0,z_0)}=\frac{f_z'(x_0,y_0,z_0)}{G_z'(x_0,y_0,z_0)}\stackrel{\small\triangle}{=}-\lambda $$ 综上所述,\((x_0,y_0,z_0)\)以下方程组的解 $$ \begin{cases} f_x'(x,y,z)+\lambda G_x'(x,y,z)=0\ f_y'(x,y,z)+\lambda G_y'(x,y,z)=0\ f_z'(x,y,z)+\lambda G_z'(x,y,z)=0\ G(x,y,z)=0 \end{cases} $$ 若函数\(L(x,y,z,\lambda)\stackrel{\small\triangle}{=}f(x,y,z)+\lambda G(x,y,z)\)存在极值点\((x^*,y^*,z^*,\lambda^*)\),则满足极值的必要条件 $$ \begin{cases} L_x'(x,y,z,\lambda)=f_x'(x,y,z)+\lambda G_x'(x,y,z)=0\ L_y'(x,y,z,\lambda)=f_y'(x,y,z)+\lambda G_y'(x,y,z)=0\ L_z'(x,y,z,\lambda)=f_z'(x,y,z)+\lambda G_z'(x,y,z)=0\ L_\lambda'(x,y,z,\lambda)=G(x,y,z)=0 \end{cases} $$ \(\Longrightarrow(x^*,y^*,z^*)=(x_0,y_0,z_0)\).

(1)最后一定要根据实际情况验证怀疑点是否是极值点最值点).

(2)上述函数\(L(x,y,z,\lambda)\)称为拉格朗日函数.

推广到多变量多约束条件的情形:一般条件极值问题 $$ \max(\min) y=f(x_1,x_2,···,x_n)\ s.t. \psi_k(x_1,x_2,···,x_n)=0,k=1,2,···,m(m<n) $$ 此时拉格朗日函数\(L(x_1,x_2,···,x_n,\lambda_1,\lambda_2,···,\lambda_m)=f(x_1,x_2,···,x_n)+\Sigma_{k=1}^{m}\lambda_k\psi_k(x_1,x_2,···,x_n)\)

其中\(\lambda_1,\lambda_2,···\lambda_m\)拉格朗日乘数.

7 偏导数在几何上的应用

7.1 矢量函数的微分法

矢量函数的概念

如果把动点\(P\)原点\(O\)连结起来就得到以原点为起点动点为终点矢量\(\vec r=\vec {OP}\)矢径),其坐标为\((x(t),y(t),z(t))\),则动点的运动方程为 $$ \vec r(t)=x(t)\vec i+y(t)\vec j+z(t)\vec k $$ 当\(t\)变动时,\(\vec r\)方向一般都随之变动,即对每一个\(t\in[\alpha,\beta]\),按上式都有唯一的矢量\(\vec r\)与之对应,这个对应规律称为矢值函数,记为\(\vec r=\vec r(t)\),其动点\(P(x,y,z)\)画出的曲线,叫做矢值函数\(\vec r=\vec r(t)\)矢端曲线,一般情况下\(t\)并不一定代表时间,而是在某一变化范围内的取值.

矢值函数的导数

矢值函数\(\vec r=\vec r(t)=x(t)\vec i+y(t)\vec j+z(t)\vec k,\Delta\vec r=\vec r(t+\Delta t)-\vec r(t)=\Delta x\vec i+\Delta y\vec j+\Delta z\vec k\).

定义:若极限\(\lim_{\substack{\\\Delta t\to0}}\frac{\Delta x}{\Delta t},\lim_{\substack{\\\Delta t\to0}}\frac{\Delta y}{\Delta t},\lim_{\substack{\\\Delta t\to0}}\frac{\Delta z}{\Delta t}\)都存在,则极限 $$ \lim_{\Delta t\to0}\frac{\Delta\vec r}{\Delta t}=x'(t)\vec i+y'(t)\vec j+z'(t)\vec k $$ 称为矢值函数\(\vec r=\vec r(t)\)\(t\)处的导数(称矢量导数),记作\(\vec r'(t)\)\(\large\frac{d\vec r}{dt}\)​.

几何意义\(\large\frac{d\vec r}{dt}\)切线的方向向量\(\iff\)曲线在\(P\)点的切矢量.

7.2 空间曲线的切线与法平面

参数式方程的空间曲线的切线与法平面

设空间曲线的参数方程\(\begin{cases}x=x(t)\\y=y(t)\\z=z(t)\end{cases}\)\(x'(t),y'(t),z'(t)\)连续不同时为零,曲线上一点\(P_0(x_0,y_0,z_0)\ \ (t=t_0)\)切矢量\({\large\frac{d\vec r}{dt}}\bigg|_{t=t_0}=(x'(t_0),y'(t_0),z'(t_0))\),则曲线上点\(P_0(x_0,y_0,z_0)\)处的切线方程为 $$ \frac{x-x_0}{x'(t_0)}=\frac{y-y_0}{y'(t_0)}=\frac{z-z_0}{z'(t_0)} $$ 过点\(P_0\)且与该直线垂直的平面称为曲线在\(P_0\)​点的法平面,则法平面方程为 $$ x'(t_0)(x-x_0)+y'(t_0)(y-y_0)+z'(t_0)(z-z_0)=0 $$

一般式方程的空间曲线的切线与法平面

曲线\(\Gamma\)\(\begin{cases}F(x,y,z)=0\\G(x,y,z)=0\end{cases}\) 在曲线上点\(P_0(x_0,y_0,z_0)\)处的切线方程.

曲线\(\Gamma\)在曲面\(S_1:F(x,y,z)=0\)经过曲面\(S_1\)上的点\(P_0\)

\(\Longrightarrow\)曲线\(\Gamma\)\(P_0\)切线必在曲面\(S_1\)在点\(P_0\)切平面

同理,曲线\(\Gamma\)\(P_0\)切线必在曲面\(S_2:G(x,y,z)=0\)在点\(P_0\)切平面上.

曲线\(\Gamma\)在点\(P_0\)处的切线方程为 $$ \begin{cases} F_x'(P_0)(x-x_0)+F_y'(P_0)(y-y_0)+F_z'(P_0)(z-z_0)=0\ G_x'(P_0)(x-x_0)+G_y'(P_0)(y-y_0)+G_z'(P_0)(z-z_0)=0 \end{cases} $$

7.3 空间曲面的切平面与法线

隐式方程的空间曲面的切平面与法向量

设已知曲面\(S:F(x,y,z)=0\)\(M_0(x_0,y_0,z_0)\)是曲面\(S\)一点,过点\(M_0\)在曲面\(S\)上可以作无数条曲线,这些曲线在该点分别都有切线,则这无数条切线都在同一个平面上(切平面).

设过点\(M_0\)曲面\(S\)任作一曲线\(\Gamma:\begin{cases}x=x(t)\\y=y(t)\\z=z(t)\end{cases}\),且\(\begin{cases}x_0=x(t_0)\\y_0=y(t_0)\\z_0=z(t_0)\end{cases}\).

曲线\(\Gamma\)在曲面\(S\)\(\Longrightarrow F\big(x(t),y(t),z(t)\big)\equiv0\),对\(t\)求导: $$ F_x'\big(x(t),y(t),z(t)\big)x'(t)+F_y'\big(x(t),y(t),z(t)\big)y'(t)+F_z'\big(x(t),y(t),z(t))z'(t\big) $$ 把\(t=t_0\)代入上式得 $$ F_x'(x_0,y_0,z_0)x'(t_0)+F_y'(x_0,y_0,z_0)y'(t_0)+F_z'(x_0,y_0,z_0)z'(t_0)=0\ \iff\big(F_x'(x_0,y_0,z_0),F_y'(x_0,y_0,z_0),F_z'(x_0,y_0,z_0)\big)\big(x'(t_0),y'(t_0),z'(t_0)\big)=0 $$ \(\Gamma\)在点\(M_0\)处的切矢量\(\vec v=\big(x'(t_0),y'(t_0),z'(t_0)\big)\)矢量\(\vec n\stackrel{\small\triangle}{=}\big(F_x'(x_0,y_0,z_0),F_y'(x_0,y_0,z_0),F_z'(x_0,y_0,z_0)\big)\)

\(\Longrightarrow\vec v\cdot\vec n=0\).

\(\Longrightarrow\)曲面上过点\(M_0\)任意一条曲线切线都与矢量\(\vec n\)垂直.

\(\Longrightarrow\)矢量\(\vec n\)为曲面在点\(M_0\)法线矢量法矢量),切平面方程为 $$ F_x'(x_0,y_0,z_0)(x-x_0)+F_y'(x_0,y_0,z_0)(y-y_0)+F_z'(x_0,y_0,z_0)(z-z_0)=0 $$ 曲面在点\(M_0\)存在切平面充分条件\(F_x',F_y',F_z'\)\(M_0\)点具有连续的偏导数\(F_x'(x_0,y_0,z_0),F_y'(x_0,y_0,z_0),F_z'(x_0,y_0,z_0)\)不同时为零.

显式方程的空间曲面的切平面与法向量

曲面方程\(z=f(x,y)\)​,则可将显式方程化为隐式方程求解.

参数式方程的空间曲面的切平面与法向量

设曲面参数方程\(\begin{cases}x=x(u,v)\\y=y(u,v)\\z=z(u,v)\end{cases}\)\((u_0,v_0)\)对应曲面上点\(P_0(x_0,y_0,z_0)\),则由\(\begin{cases}x=x(u,v)\\y=y(u,v)\end{cases}\) 可确定反函数组\(\begin{cases}u=u(x,y)\\v=v(x,y)\end{cases}\) 代入\(z=z(u,v)\Longrightarrow z\)\(x,y\)的函数.

复合函数求导法则得 $$ {\large \begin{cases} \frac{\partial z}{\partial u} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial u} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial u} \ \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial v} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial v} \end{cases}} \Longrightarrow \frac{\partial z}{\partial x} = {\large\frac{\frac{\partial (z,y)}{\partial (u,v)}}{\frac{\partial (x,y)}{\partial (u,v)}}}, \frac{\partial z}{\partial y} = {\large\frac{\frac{\partial (x,z)}{\partial (u,v)}}{\frac{\partial (x,y)}{\partial (u,v)}}} $$ 令\(F(x,y,z)=z[u(x,y),v(x,y)]-z\),则可转化为隐式方程求解.